- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Arévalo-Martínez, Damian L. (2)
-
Bange, Hermann W. (2)
-
Farías, Laura (2)
-
Kock, Annette (2)
-
Law, Cliff S. (2)
-
Rees, Andrew P. (2)
-
Rehder, Gregor (2)
-
Tortell, Philippe D. (2)
-
Upstill-Goddard, Robert C. (2)
-
Wilson, Samuel T. (2)
-
de la Paz, Mercedes (2)
-
Barnes, Jonathan (1)
-
Borges, Alberto V. (1)
-
Brown, Ian (1)
-
Bullister, John L. (1)
-
Burgos, Macarena (1)
-
Capelle, David W. (1)
-
Casso, Michael (1)
-
Fenwick, Lindsay (1)
-
Ferrón, Sara (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Wilson, Samuel T.; Bange, Hermann W.; Arévalo-Martínez, Damian L.; Barnes, Jonathan; Borges, Alberto V.; Brown, Ian; Bullister, John L.; Burgos, Macarena; Capelle, David W.; Casso, Michael; et al (, Biogeosciences)Abstract. Large-scale climatic forcing is impactingoceanic biogeochemical cycles and is expected to influence the water-columndistribution of trace gases, including methane and nitrous oxide. Our abilityas a scientific community to evaluate changes in the water-column inventoriesof methane and nitrous oxide depends largely on our capacity to obtain robustand accurate concentration measurements that can be validated acrossdifferent laboratory groups. This study represents the first formalinternational intercomparison of oceanic methane and nitrous oxidemeasurements whereby participating laboratories received batches of seawatersamples from the subtropical Pacific Ocean and the Baltic Sea. Additionally,compressed gas standards from the same calibration scale were distributed tothe majority of participating laboratories to improve the analytical accuracyof the gas measurements. The computations used by each laboratory to derivethe dissolved gas concentrations were also evaluated for inconsistencies(e.g., pressure and temperature corrections, solubility constants). Theresults from the intercomparison and intercalibration provided invaluableinsights into methane and nitrous oxide measurements. It was observed thatanalyses of seawater samples with the lowest concentrations of methane andnitrous oxide had the lowest precisions. In comparison, while the analyticalprecision for samples with the highest concentrations of trace gases wasbetter, the variability between the different laboratories was higher:36% for methane and 27% for nitrous oxide. In addition, thecomparison of different batches of seawater samples with methane and nitrousoxide concentrations that ranged over an order of magnitude revealed theramifications of different calibration procedures for each trace gas.Finally, this study builds upon the intercomparison results to developrecommendations for improving oceanic methane and nitrous oxide measurements,with the aim of precluding future analytical discrepancies betweenlaboratories.more » « less
An official website of the United States government
